產(chǎn)品中心/ PRODUCTS
簡(jiǎn)要描述:大小鼠氣溶膠氣管內(nèi)給藥套裝,可輸送定量的氣溶膠到大鼠、小鼠氣管內(nèi)和肺內(nèi),為定量化給藥提供了更好的方案:直接對(duì)大鼠、小鼠、比格犬、猴子的肺部(氣管內(nèi))進(jìn)行定量氣溶膠霧化給藥,給藥快捷、操作方便
聯(lián)系電話:021-54377179
大小鼠氣溶膠氣管內(nèi)給藥套裝,可輸送定量的氣溶膠到大鼠、小鼠氣管內(nèi)和肺內(nèi),為定量化給藥提供了更好的方案:直接對(duì)大鼠、小鼠、比格犬、猴子的肺部(氣管內(nèi))進(jìn)行定量氣溶膠霧化給藥,給藥快捷、操作方便。
有三種型號(hào)可供選擇:大鼠型氣管內(nèi)定量給藥套裝,小鼠型氣管內(nèi)定量給藥套裝,大單位氣管內(nèi)定量給藥套裝
氣管內(nèi)定量給藥裝置的主要特色:
· 定量 QUANTIFIABLE:將定量的氣溶膠給到動(dòng)物肺部
· 定時(shí) TIMED:可以在一個(gè)或多個(gè)時(shí)間點(diǎn)進(jìn)行給藥
· 有效 EFFECTIVE:氣溶膠的吸收效果好,給藥快速,效率高,操作方便
· 方便 CONVENIENCE:維護(hù)簡(jiǎn)單,操作方便
型號(hào):YAN
型號(hào):YAN
大小鼠氣管內(nèi)定量給藥裝置的主要特點(diǎn):
· 快速、精確的直接肺部給藥——?dú)馊苣z無(wú)浪費(fèi);
· 純機(jī)械動(dòng)力,無(wú)外部空氣進(jìn)入;
· 不需加熱、推進(jìn)劑、超聲波或壓縮空氣等,對(duì)藥物物影響;
· 手持式設(shè)計(jì),使用非常方便;
· 噴射頭頂端圓滑的設(shè)計(jì),保證安全、溫和的插入氣管內(nèi);
· 可高溫高壓消毒滅菌,可重復(fù)使用;
· 比其它霧化器和吸入設(shè)備提供更高濃度發(fā)藥物體積或劑量;
· 比傳統(tǒng)滴注法給藥提供更均勻的藥物分布;
使用方法圖例:
|
另外,可選配大小鼠、大小鼠工具包套裝、大小鼠等工具,能更便捷的完成手術(shù)。
大鼠、小鼠
大小鼠工具包套裝
平臺(tái)(多種款式和型號(hào)可選)
CG-02M型,適合做小鼠,外尺寸:20*15*20cm
CG-02R型,適合做大鼠,外尺寸:22*21*28cm
適用于大、小鼠的手術(shù)操作
CG-04M型,小鼠型
配合鐵架臺(tái)使用,多角度可調(diào);
型號(hào):CG-06M
多角度可調(diào);
大小鼠通用,尺寸約:20*15*15cm
部分參考文獻(xiàn):
1. Li, Cheng et al. “Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody." Cell vol. 185,8 (2022): 1389-1401.e18. doi:10.1016/j.cell.2022.03.009
2. Peng, Boya et al. “Robust delivery of RIG-I agonists using extracellular vesicles for anti-cancer immunotherapy." Journal of extracellular vesicles vol. 11,4 (2022): e12187. doi:10.1002/jev2.12187
3. Wu, Lan et al. “Poly(lactide-co-glycolide) Nanoparticles Mediate Sustained Gene Silencing and Improved Biocompatibility of siRNA Delivery Systems in Mouse Lungs after Pulmonary Administration." ACS applied materials & interfaces vol. 13,3 (2021): 3722-3737. doi:10.1021/acsami.0c21259
4. Tian, Xidong et al. “Pulmonary Delivery of Reactive Oxygen Species/Glutathione-Responsive Paclitaxel Dimeric Nanoparticles Improved Therapeutic Indices against Metastatic Lung Cancer." ACS applied materials & interfaces vol. 13,48 (2021): 56858-56872. doi:10.1021/acsami.1c16351
5. Gu, Peiyu et al. “Protective function of interleukin-22 in pulmonary fibrosis." Clinical and translational medicine vol. 11,8 (2021): e509. doi:10.1002/ctm2.509
6. Su, Ruonan et al. “Venetoclax nanomedicine alleviates acute lung injury via increasing neutrophil apoptosis." Biomaterials science vol. 9,13 (2021): 4746-4754. doi:10.1039/d1bm00481f
7. Yang, Huilin et al. “Triptolide dose-dependently improves LPS-induced alveolar hypercoagulation and fibrinolysis inhibition through NF-κB inactivation in ARDS mice." Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie vol. 139 (2021): 111569. doi:10.1016/j.biopha.2021.111569
8. Wu, Yanqi et al. “SN50 attenuates alveolar hypercoagulation and fibrinolysis inhibition in acute respiratory distress syndrome mice through inhibiting NF-κB p65 translocation." Respiratory research vol. 21,1 130. 27 May. 2020, doi:10.1186/s12931-020-01372-6
9. Han, Meishan et al. “Engineering of Stimulus-Responsive Pirfenidone Liposomes for Pulmonary Delivery During Treatment of Idiopathic Pulmonary Fibrosis." Frontiers in pharmacology vol. 13 882678. 25 Apr. 2022, doi:10.3389/fphar.2022.882678
10. Wu, Lan et al. “Quantitative comparison of three widely-used pulmonary administration methods in vivo with radiolabeled inhalable nanoparticles." European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V vol. 152 (2020): 108-115. doi:10.1016/j.ejpb.2020.05.004
11. Peng, Jianqing et al. “Carboxymethyl Chitosan Modified Oxymatrine Liposomes for the Alleviation of Emphysema in Mice via Pulmonary Administration." Molecules (Basel, Switzerland) vol. 27,11 3610. 4 Jun. 2022, doi:10.3390/molecules27113610
:,
:
yuyanbio
:yuyanbio