產(chǎn)品分類
Products相關(guān)文章
Related articles產(chǎn)品中心/ PRODUCTS
簡(jiǎn)要描述:腦立體定位儀是神經(jīng)解剖、神經(jīng)生理、神經(jīng)藥理和神經(jīng)外科等領(lǐng)域內(nèi)的重要研究設(shè)備,腦立體定位儀用于對(duì)神經(jīng)結(jié)構(gòu)進(jìn)行定向的注射、刺激、破壞、引導(dǎo)電極等操作,可用于帕金森氏病動(dòng)物模型建立,癲癇動(dòng)物模型建立,腦內(nèi)腫瘤模型建立,學(xué)習(xí)記憶,腦內(nèi)神經(jīng)干細(xì)胞移植,腦缺血等研究
聯(lián)系電話:021-54377179
品牌 | 玉研儀器 | 價(jià)格區(qū)間 | 面議 |
---|---|---|---|
產(chǎn)地類別 | 國(guó)產(chǎn) | 應(yīng)用領(lǐng)域 | 綜合 |
玉研儀器自主研發(fā)腦立體定位儀十四年,適用于大鼠、小鼠等實(shí)驗(yàn)動(dòng)物,經(jīng)典十字操作臂實(shí)現(xiàn)精準(zhǔn)定位,精度可達(dá)10微米,特制螺紋精密螺桿,穩(wěn)固不晃動(dòng)實(shí)現(xiàn)對(duì)特定腦區(qū)的精確定位,是神經(jīng)環(huán)路研究、神經(jīng)系統(tǒng)性疾病、神經(jīng)藥理等領(lǐng)域內(nèi)的重要研究設(shè)備,廣泛面向全國(guó)各大科研院校,醫(yī)院,高新企業(yè),藥企,醫(yī)療機(jī)構(gòu)等科研單位。
腦立體定位儀是神經(jīng)解剖、神經(jīng)生理、神經(jīng)藥理和神經(jīng)外科等領(lǐng)域內(nèi)的重要研究設(shè)備,腦立體定位儀用于對(duì)神經(jīng)結(jié)構(gòu)進(jìn)行定向的注射、刺激、破壞、引導(dǎo)電極等操作,可用于帕金森氏病動(dòng)物模型建立,癲癇動(dòng)物模型建立,腦內(nèi)腫瘤模型建立,學(xué)習(xí)記憶,腦內(nèi)神經(jīng)干細(xì)胞移植,腦缺血等研究。
腦立體定位儀是利用大小鼠顱骨外面的前囟點(diǎn),即Bragma點(diǎn),或其它參考點(diǎn)所規(guī)定的三維坐標(biāo)系統(tǒng),來確定皮層下某些神經(jīng)結(jié)構(gòu)的位置,通過固定在立體定位儀操作臂上的在特定三維坐標(biāo)的神經(jīng)結(jié)構(gòu)的位置,鉆孔打開顱骨,以便在非直視暴露下對(duì)其進(jìn)行定向的刺激、破壞、注射藥物、引導(dǎo)電位等研究。
數(shù)字型號(hào)的腦立體定位儀,能直觀的顯示出定位儀的三維坐標(biāo),并可以按鍵歸零,移動(dòng)操作臂后,顯示特定位置的新的坐標(biāo),通過選配不同動(dòng)物適配器可用于不同的小動(dòng)物實(shí)驗(yàn)。
產(chǎn)品特點(diǎn):
· 操作靈活、簡(jiǎn)便,標(biāo)配大鼠適配器;
· 腦立體定位儀標(biāo)尺是由激光雕刻,清晰易讀,精確度為0.1mm;
· 腦立體定位儀操作臂移動(dòng)范圍(上下,左右,前后):三方向移動(dòng)距離80mm;
· 垂直方向可90度轉(zhuǎn)動(dòng),并隨時(shí)鎖定位置;
· 擴(kuò)充能力很強(qiáng),可增加操作臂,增加注射裝置及等;
· 可以根據(jù)需要增加不同的固定器,用于多種動(dòng)物;
具有以下優(yōu)勢(shì):
· 標(biāo)尺易讀數(shù)
· 移動(dòng)平滑
· 調(diào)節(jié)
· 電生理操作方便
· 配件多樣,可選配各種動(dòng)物適配器,麻醉罩以及
標(biāo)準(zhǔn)型大鼠定位儀的主要構(gòu)造:
根據(jù)需求不同,有多種不同的型號(hào)可供選擇:?jiǎn)伪坌?,雙臂型,數(shù)顯型,數(shù)控型,敬請(qǐng)。
多種型號(hào)可供選擇:
標(biāo)準(zhǔn)型大鼠腦定位儀 型號(hào):SA-100
數(shù)顯大鼠腦定位儀 型號(hào):SA-150
數(shù)顯雙臂大鼠腦定位儀 型號(hào):SA-151
相關(guān)配件及可選配件:
大鼠門牙固定適配器 | 小鼠固定適配器 |
電極夾持器 | 電極、螺帽、注射器夾持器 |
電極、注射器夾持器 | 微量注射器 |
部分參考文獻(xiàn):
1. Albéri, L., Lintas, A., Kretz, R., Schwaller, B., & Villa, A. E. (2013). The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. Journal of neurophysiology, 109(11), 2827-2841.
2. Sonati, T., Reimann, R. R., Falsig, J., Baral, P. K., O’Connor, T., Hornemann, S., Aguzzi, A. (2013). The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature, 501(7465), 102-106.
3. Ali, I., O’Brien, P., Kumar, G., Zheng, T., Jones, N. C., Pinault, D., O’Brien, T. J. (2013). Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy. PLOS ONE, 8(6), e66962.
4. Bell, L. A., Bell, K. A., & McQuiston, A. R. (2013). Synaptic Muscarinic Response Types in Hippocampal CA1 Interneurons Depend on Different Levels of Presynaptic Activity and Different Muscarinic Receptor Subtypes. Neuropharmacology.
5. Bolzoni, F., B?czyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
6. Bolzoni, F., B?czyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
7. Babaei, P., Tehrani, B. S., & Alizadeh, A. (2013). Effect of BDNF and adipose derived stem cells transplantation on cognitive deficit in Alzheimer model of rats. Journal of Behavioral and Brain Science, 3, 156-161.
8. Gilmartin, M. R., Miyawaki, H., Helmstetter, F. J., & Diba, K. (2013). Prefrontal Activity Links Nonoverlapping Events in Memory. The Journal of Neuroscience, 33(26), 10910-10914.
9. Feng, L., Sametsky, E. A., Gusev, A. G., & Uteshev, V. V. (2012). Responsiveness to nicotine of neurons of the caudal nucleus of the solitary tract correlates with the neuronal projection target. Journal of Neurophysiology, 108(7), 1884-1894.
10. Clarner, T., Diederichs, F., Berger, K., Denecke, B., Gan, L., Van der Valk, P., Kipp, M. (2012). Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia, 60(10), 1468-1480.
11. Girardet, C., Bonnet, M. S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Troadec, J. D. (2011). Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenol: A PGE2-independent mechanism.Toxicological Sciences, 124(1), 179-191.
12. Hru?ka-Plocháň, M., Juhas, S., Juhasova, J., Galik, J., Miyanohara, A., Marsala, M., Motlik, J. (2010). A27 Expression of the human mutant huntingtin in minipig striatum induced formation of EM48+ inclusions in the neuronal nuclei, cytoplasm and processes. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
13. Brooks, S., Jones, L., & Dunnett, S. B. (2010). A29 Frontostriatal pathology in the (C57BL/6J) YAC128 mouse uncovered by the operant delayed alternation task. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A10.
14. Yu, L., Metzger, S., Clemens, L. E., Ehrismann, J., Ott, T., Gu, X., Nguyen, H. P. (2010). A28 Accumulation and aggregation of human mutant huntingtin and neuron atrophy in BAC-HD transgenic rat. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
15. Baxa, M., Juhas, S., Pavlok, A., Vodicka, P., Juhasova, J., Hru?ka-Plocháň, M., Motlik, J. (2010). A26 Transgenic miniature pig as an animal model for Huntington’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A8-A9.
:,
:
yuyanbio
:yuyanbio